Nonlinear Solver Lab
W4法の収束判定について (II)
- 特異値分解付きW4法による標準問題の解法を用いて、W4法における3つの収束判定方法を比較する。
Comparison among criteria by standard test problems¶
- Solving two-dimensional problems in Standard Test Functions by the W4 method with the SV decomposition
Package Inclusion¶
- Sympy :: To define the set of nonlinear equations
- Numpy :: For iterative solver
- Scipy :: To use Linear solver
- Matplotlib :: For figure
In [1]:
import sympy as sy;
import numpy as np;
from sympy import exp,cos;
#from numpy import cos,sin,pi;
from scipy import linalg;
import matplotlib.pyplot as plt;
Parameter Setup¶
For the W4 method, we define
- dim : dimension of system (It determines the resolution)
- dtau : $\Delta\tau$ for the W4 evolution
- errmax : Criterion of error to stop iteration
- itermax : Maximum iteration.
In [2]:
dim=2;
In [3]:
dtau=0.8;
errmax = pow(10,-8);
itermax = pow(10,6);
In [4]:
### Variables
### x[1], x[2], x[3], ... , x[dim]
###
x = []
for i in range(0,dim):
vname = 'x[' + str(i) +']';
x.append(sy.symbols(vname));
Definition of Source in the Sympy style¶
- F(x) : System of nonlinear equations
- |F(x)| : Absolute components
- J : Jacobian matrix $\partial$ F / $\partial$ x
In [5]:
f_rosenbrock = [];
f_rosenbrock.append( 10*(x[1]-x[0]**2) );
f_rosenbrock.append( 1 - x[0] );
f_freudenstein = [];
f_freudenstein.append( -13 +x[0] +((5-x[1])*x[1]-2)*x[1] );
f_freudenstein.append( -29 +x[0] +((x[1]+1)*x[1]-14)*x[1] );
f_powell = [];
f_powell.append( pow(10,4)*x[0]*x[1] -1 );
f_powell.append( exp(-x[0]) +exp(-x[1]) -1.0001 );
f_brown = [];
f_brown.append( x[0]*x[1]**2 -2*x[1] +x[0] -pow(10,6) );
f_brown.append( x[0]**2*x[1] -2*x[0] +x[1] -2*pow(10,-6) );
f_beale = [];
f_beale.append( 1.5 -x[0]*(1-x[1]) );
f_beale.append( 2.25 -x[0]*(1-x[1]**2) );
f_hueso = [];
f_hueso.append( (x[0]-1)**2*(x[0]-x[1]) );
f_hueso.append( (x[1]-2)**5*cos(2*x[0]/x[1]) );
f_fujisawa = [];
f_fujisawa.append( x[0]**2 +x[1]**2 -4 );
f_fujisawa.append( x[0]**2*x[1] -1 );
In [6]:
# input source
def calc_source(x,f):
### Summation of absolute values of all terms in each equation
### to compare the error with the typical value of each equation
fa = [];
for j in range(dim):
tmp = 0;
for i in range(len(f[j].args)):
tmp = tmp + abs(f[j].args[i]);
fa.append(tmp);
### Definition of variables, sources, absolute sources(x, F, |F|) as vector
v = sy.Matrix([x]).transpose();
F = sy.Matrix([f]).transpose();
Fa = sy.Matrix([fa]).transpose();
### Analytic calculation of Jacobian(dim x dim Matrix)
J = sy.Matrix();
for i in range(dim):
J = J.col_insert(i,F.diff(x[i]));
fa1 = [];
for j in range(dim):
tmp = 0;
for i in range(dim):
tmp = tmp + abs(J[j,i]*v[i]);
fa1.append(tmp);
fa2 = [];
for j in range(dim):
tmp = abs(v[i]);
fa2.append(tmp);
Fa1 = sy.Matrix([fa1]).transpose();
Fa2 = sy.Matrix([fa2]).transpose();
### From Sympy to Numpy
arg = v.transpose();
vn = sy.lambdify(arg, v, "numpy")
Fn = sy.lambdify(arg, F, "numpy")
Fan = sy.lambdify(arg, Fa, "numpy")
Fa1n = sy.lambdify(arg, Fa1, "numpy")
Fa2n = sy.lambdify(arg, Fa2, "numpy")
Jacn = sy.lambdify(arg, J, "numpy")
return vn,Fn,Fan,Fa1n,Fa2n,Jacn;
Transformation from Sympy style to Numpy style¶
In [7]:
#vn, Fn, Fan, Jacn = calc_source(x,f);
vn_rosenbrock, Fn_rosenbrock, Fan_rosenbrock, Fa1n_rosenbrock, Fa2n_rosenbrock, Jacn_rosenbrock = calc_source(x,f_rosenbrock);
vn_freudenstein, Fn_freudenstein, Fan_freudenstein, Fa1n_freudenstein, Fa2n_freudenstein, Jacn_freudenstein = calc_source(x,f_freudenstein);
vn_powell, Fn_powell, Fan_powell, Fa1n_powell, Fa2n_powell, Jacn_powell = calc_source(x,f_powell);
vn_brown, Fn_brown, Fan_brown, Fa1n_brown, Fa2n_brown, Jacn_brown = calc_source(x,f_brown);
vn_beale, Fn_beale, Fan_beale, Fa1n_beale, Fa2n_beale, Jacn_beale = calc_source(x,f_beale);
vn_hueso, Fn_hueso, Fan_hueso, Fa1n_hueso, Fa2n_hueso, Jacn_hueso = calc_source(x,f_hueso);
vn_fujisawa, Fn_fujisawa, Fan_fujisawa, Fa1n_fujisawa, Fa2n_fujisawa, Jacn_fujisawa = calc_source(x,f_fujisawa);
Definition :: W4SV method¶
In [8]:
def w4sv_analysis(v,F,Fa,Fa1,Fa2,J,ini,dt,itermax,errmax):
p0 = np.zeros(dim);
v0 = v(*ini).transpose()[0];
evot = [];
# evox = np.array([v0]).reshape(1,dim);
F0=F(*v0).transpose()[0].transpose();
evof = np.array([F0]).reshape(1,dim);
F0a1=Fa(*v0).transpose()[0].transpose();
F0a2=Fa1(*v0).transpose()[0].transpose();
F0a3=Fa2(*v0).transpose()[0].transpose();
evoa1 = np.array([F0a1]).reshape(1,dim);
evoa2 = np.array([F0a2]).reshape(1,dim);
evoa3 = np.array([F0a3]).reshape(1,dim);
for i in range(itermax):
J0=J(*v0);
F0=F(*v0).transpose()[0].transpose();
F0a1=Fa(*v0).transpose()[0].transpose();
F0a2=Fa1(*v0).transpose()[0].transpose();
F0a3=Fa2(*v0).transpose()[0].transpose();
# print(v0);#,print(p0);
err = 0.0;
for k in range(dim):
err = max(err,abs(F0[k]/F0a1[k]));
if err < errmax:
break;
U, s, V = np.linalg.svd(J0);
si = np.array([]);
for j in range(dim):
if s[j] > pow(10,-6):
si = np.append(si,1.0/s[j]);
else:
si = np.append(si,1.0);
S = np.diag(si);
evot = np.append(evot,i);
# evox = np.append(evox,np.array([v0]),axis=0);
# evop = np.append(evop,np.array([p0]),axis=0);
evof = np.append(evof,np.array([F0]),axis=0);
evoa1 = np.append(evoa1,np.array([F0a1]),axis=0);
evoa2 = np.append(evoa2,np.array([F0a2]),axis=0);
evoa3 = np.append(evoa3,np.array([F0a3]),axis=0);
srcx = V.transpose().dot(p0);
tmp = U.transpose().dot(F0);
srcp = -2*p0 -S.dot(tmp);
v0 = v0 +srcx*dt;
p0 = p0 +srcp*dt;
return v0, i, err, evot, evoa1, evoa2, evoa3, evof
Initial conditions for test problems¶
In [9]:
vini_rosenbrock = np.array([]);
vini_rosenbrock = np.append(vini_rosenbrock, 1.2);
vini_rosenbrock = np.append(vini_rosenbrock, 1.0);
vini_freudenstein = np.array([]);
vini_freudenstein = np.append(vini_freudenstein, 6.0);
vini_freudenstein = np.append(vini_freudenstein, 3.0);
vini_powell1 = np.array([]);
vini_powell1 = np.append(vini_powell1, 0.0);
vini_powell1 = np.append(vini_powell1, 1.0);
vini_powell2 = np.array([]);
vini_powell2 = np.append(vini_powell2, 1.0);
vini_powell2 = np.append(vini_powell2, 1.0);
vini_brown = np.array([]);
vini_brown = np.append(vini_brown, 1.0);
vini_brown = np.append(vini_brown, 1.0);
vini_beale1 = np.array([]);
vini_beale1 = np.append(vini_beale1, 1.0);
vini_beale1 = np.append(vini_beale1, 1.0);
vini_beale2 = np.array([]);
vini_beale2 = np.append(vini_beale2, 0.0);
vini_beale2 = np.append(vini_beale2, 2.0);
vini_hueso = np.array([]);
vini_hueso = np.append(vini_hueso, 1.5);
vini_hueso = np.append(vini_hueso, 2.5);
vini_fujisawa1 = np.array([]);
vini_fujisawa1 = np.append(vini_fujisawa1, 0.0);
vini_fujisawa1 = np.append(vini_fujisawa1, 1.0);
vini_fujisawa2 = np.array([]);
vini_fujisawa2 = np.append(vini_fujisawa2, 0.0);
vini_fujisawa2 = np.append(vini_fujisawa2, -1.0);
Demonstrations¶
- Rosenbrock's problem
- Freudenstein's problem
- Powell's problem (Two initial conditions)
- Brown's problem
- Beale's problem (Two initial conditions)
- Hueso's problem
- Fujisawa's problem (Two initial conditions)
Outputs :¶
( Solution x and y, Number of iterations to obtain the solution, Convergence Error )¶
In [10]:
vans_rosenbrock, iter_rosenbrock, err, t0_rosenbrock, a1_rosenbrock, a2_rosenbrock, a3_rosenbrock, a0_rosenbrock = w4sv_analysis(vn_rosenbrock,Fn_rosenbrock,Fan_rosenbrock,Fa1n_rosenbrock,Fa2n_rosenbrock,Jacn_rosenbrock,vini_rosenbrock,dtau,itermax,errmax);
vans_rosenbrock, iter_rosenbrock, err
Out[10]:
In [11]:
vans_freudenstein, iter_freudenstein, err, t0_freudenstein, a1_freudenstein, a2_freudenstein, a3_freudenstein, a0_freudenstein = w4sv_analysis(vn_freudenstein,Fn_freudenstein,Fan_freudenstein, Fa1n_freudenstein, Fa2n_freudenstein,Jacn_freudenstein,vini_freudenstein,dtau,itermax,errmax);
vans_freudenstein, iter_freudenstein, err
Out[11]:
In [12]:
vans_powell1, iter_powell1, err, t0_powell1, a1_powell1, a2_powell1, a3_powell1, a0_powell1 = w4sv_analysis(vn_powell,Fn_powell,Fan_powell,Fa1n_powell,Fa2n_powell,Jacn_powell,vini_powell1,dtau,itermax,errmax);
vans_powell1, iter_powell1, err
Out[12]:
In [13]:
vans_powell2, iter_powell2, err, t0_powell2, a1_powell2, a2_powell2, a3_powell2, a0_powell2 = w4sv_analysis(vn_powell,Fn_powell,Fan_powell,Fa1n_powell,Fa2n_powell,Jacn_powell,vini_powell2,dtau,itermax,errmax);
vans_powell2, iter_powell2, err
Out[13]:
In [14]:
vans_brown, iter_brown, err, t0_brown, a1_brown, a2_brown, a3_brown, a0_brown = w4sv_analysis(vn_brown,Fn_brown,Fan_brown,Fa1n_brown,Fa2n_brown,Jacn_brown,vini_brown,dtau,itermax,errmax);
vans_brown, iter_brown, err
Out[14]:
In [15]:
vans_beale1, iter_beale1, err, t0_beale1, a1_beale1, a2_beale1, a3_beale1, a0_beale1 = w4sv_analysis(vn_beale,Fn_beale,Fan_beale,Fa1n_beale,Fa2n_beale,Jacn_beale,vini_beale1,dtau,itermax,errmax);
vans_beale1, iter_beale1, err
Out[15]:
In [16]:
vans_beale2, iter_beale2, err, t0_beale2, a1_beale2, a2_beale2, a3_beale2, a0_beale2 = w4sv_analysis(vn_beale,Fn_beale,Fan_beale,Fa1n_beale,Fa2n_beale,Jacn_beale,vini_beale2,dtau,itermax,errmax);
vans_beale2, iter_beale2, err
Out[16]:
In [17]:
vans_hueso, iter_hueso, err, t0_hueso, a1_hueso, a2_hueso, a3_hueso, a0_hueso = w4sv_analysis(vn_hueso,Fn_hueso,Fan_hueso,Fa1n_hueso,Fa2n_hueso,Jacn_hueso,vini_hueso,dtau,itermax,errmax);
vans_hueso, iter_hueso, err
Out[17]:
In [18]:
vans_fujisawa1, iter_fujisawa1, err, t0_fujisawa1, a1_fujisawa1, a2_fujisawa1, a3_fujisawa1, a0_fujisawa1 = w4sv_analysis(vn_fujisawa,Fn_fujisawa,Fan_fujisawa,Fa1n_fujisawa,Fa2n_fujisawa,Jacn_fujisawa,vini_fujisawa1,dtau,itermax,errmax);
vans_fujisawa1, iter_fujisawa1, err
Out[18]:
In [19]:
vans_fujisawa2, iter_fujisawa2, err, t0_fujisawa2, a1_fujisawa2, a2_fujisawa2, a3_fujisawa2, a0_fujisawa2 = w4sv_analysis(vn_fujisawa,Fn_fujisawa,Fan_fujisawa,Fa1n_fujisawa,Fa2n_fujisawa,Jacn_fujisawa,vini_fujisawa2,dtau,itermax,errmax);
vans_fujisawa2, iter_fujisawa2, err
Out[19]:
Comparison of criteria by Fujisawa's Problem¶
- Newton-Raphson method cannot find the solution starting from this initial guess
In [20]:
f1a0 = [];
for i in range(0,iter_fujisawa2):
f1a0 = np.append(f1a0,a0_fujisawa2[i][0]);
f1a1 = [];
for i in range(0,iter_fujisawa2):
f1a1 = np.append(f1a1,a1_fujisawa2[i][0]);
f1a2 = [];
for i in range(0,iter_fujisawa2):
f1a2 = np.append(f1a2,a2_fujisawa2[i][0]);
f1a3 = [];
for i in range(0,iter_fujisawa2):
f1a3 = np.append(f1a3,a3_fujisawa2[i][0]);
In [21]:
f2a0 = [];
for i in range(0,iter_fujisawa2):
f2a0 = np.append(f2a0,a0_fujisawa2[i][1]);
f2a1 = [];
for i in range(0,iter_fujisawa2):
f2a1 = np.append(f2a1,a1_fujisawa2[i][1]);
f2a2 = [];
for i in range(0,iter_fujisawa2):
f2a2 = np.append(f2a2,a2_fujisawa2[i][1]);
f2a3 = [];
for i in range(0,iter_fujisawa2):
f2a3 = np.append(f2a3,a3_fujisawa2[i][1]);
t = t0_fujisawa2
In [22]:
### Figures
fig = plt.figure(figsize=(12,3));
ax1 = fig.add_subplot(1,2,1);
ax1.plot(t,(abs(f1a0)/f1a1),marker='o',label='Definition 1');
ax1.plot(t,(abs(f1a0)/f1a2),marker='x',label='Definition 2');
ax1.plot(t,(abs(f1a0)/f1a3),marker='d',label='Definition 3');
ax1.set_xlabel("$Iteration$");
ax1.set_ylabel("$|F_1|/|F_1|_{crit}$");
ax1.set_yscale('log');
ax1.set_title('Error evolution of $F_1$')
ax1.legend();
ax2 = fig.add_subplot(1,2,2);
ax2.plot(t,(abs(f2a0)/f2a1),marker='o',label='Definition 1');
ax2.plot(t,(abs(f2a0)/f2a2),marker='x',label='Definition 2');
ax2.plot(t,(abs(f2a0)/f2a3),marker='d',label='Definition 3');
ax2.set_xlabel("$Iteration$");
ax2.set_ylabel("$|F_2|/|F_2|_{crit}$");
ax2.set_yscale('log');
ax2.set_title('Error evolution of $F_{2}$')
ax2.legend();
fig.tight_layout();
Comparison of criteria by Hueso's Problem¶
- The Jacobian matrix for this problem at the solution is singular.
In [23]:
f1a0 = [];
for i in range(0,iter_hueso):
f1a0 = np.append(f1a0,a0_hueso[i][0]);
f1a1 = [];
for i in range(0,iter_hueso):
f1a1 = np.append(f1a1,a1_hueso[i][0]);
f1a2 = [];
for i in range(0,iter_hueso):
f1a2 = np.append(f1a2,a2_hueso[i][0]);
f1a3 = [];
for i in range(0,iter_hueso):
f1a3 = np.append(f1a3,a3_hueso[i][0]);
In [24]:
f2a0 = [];
for i in range(0,iter_hueso):
f2a0 = np.append(f2a0,a0_hueso[i][1]);
f2a1 = [];
for i in range(0,iter_hueso):
f2a1 = np.append(f2a1,a1_hueso[i][1]);
f2a2 = [];
for i in range(0,iter_hueso):
f2a2 = np.append(f2a2,a2_hueso[i][1]);
f2a3 = [];
for i in range(0,iter_hueso):
f2a3 = np.append(f2a3,a3_hueso[i][1]);
t = t0_hueso
In [25]:
### Figures
fig = plt.figure(figsize=(12,3));
ax1 = fig.add_subplot(1,2,1);
ax1.plot(t,(abs(f1a0)/f1a1),marker='o',label='Definition 1');
ax1.plot(t,(abs(f1a0)/f1a2),marker='x',label='Definition 2');
ax1.plot(t,(abs(f1a0)/f1a3),marker='d',label='Definition 3');
ax1.set_xlabel("$Iteration$");
ax1.set_ylabel("$|F_1|/|F_1|_{crit}$");
ax1.set_yscale('log');
ax1.set_title('Error evolution of $F_1$')
ax1.legend();
ax2 = fig.add_subplot(1,2,2);
ax2.plot(t,(abs(f2a0)/f2a1),marker='o',label='Definition 1');
ax2.plot(t,(abs(f2a0)/f2a2),marker='x',label='Definition 2');
ax2.plot(t,(abs(f2a0)/f2a3),marker='d',label='Definition 3');
ax2.set_xlabel("$Iteration$");
ax2.set_ylabel("$|F_2|/|F_2|_{crit}$");
ax2.set_yscale('log');
ax2.set_title('Error evolution of $F_{2}$')
ax2.legend();
fig.tight_layout();
Comments on the first Figures: Fujisawa's problem¶
- $|F_i|_{crit}$ is defined in the three ways:
- the sum of absolute values of all terms,
- the sum of Jacobian times variable, $J_{ij}x_{j}$
- the absolute value of $x_{i}$
- For Fujisawa's problem, any definition of the criterion to stop the W4 iteration works well.
- We sometimes face with the singularity that makes the second criterion worse to evaluate the order of equation.
Comments on the second Figures: Hueso's problem¶
- For Hueso's problem, the second definition becomes worse as we reach the solution.
- To conclude, it seems practically fine to evaluate the order of equations by the third definition, which is just to use the order of variables.
- Note that the third definition may work unless the solution is exactly zero.
In [ ]: